Proving Implications by Algebraic Approximation
نویسندگان
چکیده
This paper applies techniques of algebraic approximation to provide e ective algorithms to determine the validity of universally quanti ed implications over lattice structures. We generalize the known result which states that any semilattice is approximated in the two element lattice. We show that the validity of a universally quanti ed implication over a possibly in nite domain can be determined by examining its validity over a simpler domain the size of which is related to the number of constants in . Both the known as well as the new results have high potential in providing practical automated techniques in various areas of application in computer science.
منابع مشابه
Criteria for irrationality, linear independence, transcendence and algebraic independence
For proving linear independence of real numbers, Hermite [6] considered simultaneous approximation to these numbers by algebraic numbers. The point of view introduced by Siegel in 1929 [14] is dual (duality in the sense of convex bodies): he considers simultaneous approximation by means of independent linear forms. We define the height of a linear form L = a0X0 + · · · + amXm with complex coeff...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملCoarse Spaces by Algebraic Multigrid: Multigrid convergence and Upscaling Error Estimates
We give an overview of a number of algebraic multigrid methods targeting finite element discretization problems. The focus is on the properties of the constructed hierarchy of coarse spaces that guarantee (two-grid) convergence. In particular, a necessary condition known as “weak approximation property,” and a sufficient one, referred to as “strong approximation property,” are discussed. Their ...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملRough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994